If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+13y-11=0
a = 2; b = 13; c = -11;
Δ = b2-4ac
Δ = 132-4·2·(-11)
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{257}}{2*2}=\frac{-13-\sqrt{257}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{257}}{2*2}=\frac{-13+\sqrt{257}}{4} $
| 56+2x+4=x | | t2+ 3=4 | | -2=2(u+2)-8u | | 12.6+40x=9.6+80x | | 9x+2x-10=54 | | 3/4(m=12)=21 | | 6b+2=5b+5 | | 4x+5-13x=23 | | V=33.4+2x | | 2x=9=8x+21 | | 25-(x-13)=101 | | 5n-5=n+10 | | 6n-104=32 | | 8d-4=76 | | 7c-6=57 | | 14x-19=-61 | | 6n-4=62 | | 5a-15+-2a-10=5a | | 7z=4z=21 | | 8m-2=86 | | 4x+3+-8=90 | | 9y-4=76 | | 2x-60=x/3+40 | | -8+3p=4 | | 6p-5=43 | | k/4=-15+16 | | 180=5x-30+4x | | 3v=0 | | 10=h28 | | 8v—5v=0 | | 28p+6=62 | | 48•2x-42(x-4)=56(x-4) |